In vitro transcription profiling of the σS subunit of bacterial RNA polymerase: re-definition of the σS regulon and identification of σS-specific promoter sequence elements
نویسندگان
چکیده
Specific promoter recognition by bacterial RNA polymerase is mediated by σ subunits, which assemble with RNA polymerase core enzyme (E) during transcription initiation. However, σ(70) (the housekeeping σ subunit) and σ(S) (an alternative σ subunit mostly active during slow growth) recognize almost identical promoter sequences, thus raising the question of how promoter selectivity is achieved in the bacterial cell. To identify novel sequence determinants for selective promoter recognition, we performed run-off/microarray (ROMA) experiments with RNA polymerase saturated either with σ(70) (Eσ(70)) or with σ(S) (Eσ(S)) using the whole Escherichia coli genome as DNA template. We found that Eσ(70), in the absence of any additional transcription factor, preferentially transcribes genes associated with fast growth (e.g. ribosomal operons). In contrast, Eσ(S) efficiently transcribes genes involved in stress responses, secondary metabolism as well as RNAs from intergenic regions with yet-unknown function. Promoter sequence comparison suggests that, in addition to different conservation of the -35 sequence and of the UP element, selective promoter recognition by either form of RNA polymerase can be affected by the A/T content in the -10/+1 region. Indeed, site-directed mutagenesis experiments confirmed that an A/T bias in the -10/+1 region could improve promoter recognition by Eσ(S).
منابع مشابه
Bacterial sigma factors: a historical, structural, and genomic perspective.
Transcription initiation is the crucial focal point of gene expression in prokaryotes. The key players in this process, sigma factors (σs), associate with the catalytic core RNA polymerase to guide it through the essential steps of initiation: promoter recognition and opening, and synthesis of the first few nucleotides of the transcript. Here we recount the key advances in σ biology, from their...
متن کاملExpanding the RpoS/σS-Network by RNA Sequencing and Identification of σS-Controlled Small RNAs in Salmonella
The RpoS/σS sigma subunit of RNA polymerase (RNAP) controls a global adaptive response that allows many Gram-negative bacteria to survive starvation and various stresses. σS also contributes to biofilm formation and virulence of the food-borne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). In this study, we used directional RNA-sequencing and complementary assays to explore ...
متن کاملMINIREVIEW / MINI-SYNTHÈSE Regulation in the rpoS regulon of Escherichia coli
In Escherichia coli, the transcription factor σS, encoded by rpoS, controls the expression of a large number of genes involved in cellular responses to a diverse number of stresses, including starvation, osmotic stress, acid shock, cold shock, heat shock, oxidative DNA damage, and transition to stationary phase. A list of over 50 genes under the control of rpoS has been compiled. The transcript...
متن کاملThe Small RNA GcvB Promotes Mutagenic Break Repair by Opposing the Membrane Stress Response
Microbes and human cells possess mechanisms of mutagenesis activated by stress responses. Stress-inducible mutagenesis mechanisms may provide important models for mutagenesis that drives host-pathogen interactions, antibiotic resistance, and possibly much of evolution generally. In Escherichia coli, repair of DNA double-strand breaks is switched to a mutagenic mode, using error-prone DNA polyme...
متن کاملCharacterization of the Escherichia coli σS core regulon by Chromatin Immunoprecipitation-sequencing (ChIP-seq) analysis
In bacteria, selective promoter recognition by RNA polymerase is achieved by its association with σ factors, accessory subunits able to direct RNA polymerase "core enzyme" (E) to different promoter sequences. Using Chromatin Immunoprecipitation-sequencing (ChIP-seq), we searched for promoters bound by the σ(S)-associated RNA polymerase form (Eσ(S)) during transition from exponential to stationa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 39 شماره
صفحات -
تاریخ انتشار 2011